Infinite rank solution for conformable degenerate abstract Cauchy problem in Hilbert spaces
نویسندگان
چکیده
منابع مشابه
Singularly Perturbed Cauchy Problem for Abstract Linear Differential Equations of Second Order in Hilbert Spaces∗
We study the behavior of solutions to the problem { ε (u′′ ε (t) +A1uε(t)) + u ′ ε(t) +A0uε(t) = fε(t), t ∈ (0, T ), uε(0) = u0ε, uε(0) = u1ε, as ε → 0, where A1 and A0 are two linear self-adjoint operators in a Hilbert space H. MSC: 35B25, 35K15, 35L15, 34G10 keywords: singular perturbations; Cauchy problem; boundary layer function.
متن کامل$L_{p;r} $ spaces: Cauchy Singular Integral, Hardy Classes and Riemann-Hilbert Problem in this Framework
In the present work the space $L_{p;r} $ which is continuously embedded into $L_{p} $ is introduced. The corresponding Hardy spaces of analytic functions are defined as well. Some properties of the functions from these spaces are studied. The analogs of some results in the classical theory of Hardy spaces are proved for the new spaces. It is shown that the Cauchy singular integral operator is...
متن کاملExistence for a Degenerate Cauchy Problem
We prove the existence of a solution to the degenerate parabolic Cauchy problem with a possibly unbounded Radon measure as an initial data. To accomplish this, we establish a priori estimates and derive a compactness result. We also show that the result is optimal in the Euclidian setting.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The journal of mathematics and computer science
سال: 2023
ISSN: ['2008-949X']
DOI: https://doi.org/10.22436/jmcs.031.02.03